

Date Planned ://_ Actual Date of Attempt ://_				Dail	Daily Tutorial Sheet - 4 Level - 1			Expected Duration : 90 Min Exact Duration :				
				_								
46.	Whic	Which of the following hybrid orbitals has the highest value of electronegativity?										
	(A)	sp^3	(B)	sp^2	(C)	sp	(D)	sp ³ d				
47 .	By hy	bridization, we	mean hyl	oridization of :								
	(A)	orbitals			(B)	electrons						
	(C)	both orbitals	and elect	trons	(D)	None of these						
1 8.	Whic	Which of the following statements is incorrect?										
	(A)	(A) A sigma bond has no free rotation around its axis.										
	(B) Two p orbitals always overlap laterally.											
		(C) There can be more than one sigma bond between two atoms.										
19 .	(D)	All of these						(6)				
	CaC ₂ molecule has											
	(A) (B)											
	(C)											
	(D)											
50.	What	What would be the hybridization state of the two resulting carbon atoms after the C – C bond in $\rm C_2H_6$										
	unde	undergoes heterolytic fission?										
	(A)	sp^2 both	(B)	sp^3 both	(C)	${\rm sp}^2$ and ${\rm sp}^3$	(D)	sp and sp ²				
51.	Whic	Which of the following molecules has a square pyramidal structure?										
	(A)	${\rm XeO_2F_2}$	(B)	XeOF_2	(C)	${\rm XeO_3F_2}$	(D)	XeOF_4				
52.	In th	e solid state, N	I ₂ O ₅ exis	sts as [NO ₂] ⁺ [1	NO ₃] ⁻ . Th	e hybridizations	around	the N atoms in NO ₂ ⁺ and				
	NO_3^- are, respectively:											
	(A)	sp and sp ²			(B)	sp and sp ³						
	(C)	sp^2 and sp^3			(D)	sp and sp						
53. Which of the following will have the molecular shape of a trigonal bipyramid?												
	(A)	$\mathrm{PF_{3}Cl_{2}}$	(B)	IF_5	(C)	BrF_5	(D)	SbF_5^{2-}				
4.	Molec	cular shapes of S	SF4, CF2	and XeF, are:								
			4, 4	4 4								

93

(A) the same, with 2, 0 and 1 lone pair of electrons respectively

(B) the same, with 1, 1 and 1 lone pair of electrons respectively

(C) different with 0, 1 and 2 lone pair of electrons

(D) different with 1, 0 and 2 lone pair of electrons respectively

55. The strength of bonds by overlapping of atomic orbitals is in the order

(A) 2s-2s > 2s - 2p > 2p - 2p

 $\textbf{(B)} \hspace{1cm} 2s\!-\!2p < 2s - 2s < 2p\!-\!2\,p$

(C) 2s-2s < 2s - 2p < 2p - 2p

(D) 2p-2p < 2s - 2s < 2s - 2p

56 .	Which of the following molecules or ions is not linear?											
	(A)	BeCl_2	(B)	I_3^-	(C)	CS_2	(D)	${\rm ICl}_2^+$				
57 .	In carbon-hydrogen-oxygen compounds :											
	(A)	all O – to – H b	onds are	π bonds	(B)	all C – to – H bonds are σ bonds						
	(C)	all C – to – H be	onds are	π bonds	(D)	all C – to – C bo	nds are	π bonds				
58 .	The shape of XeO ₂ F ₂ molecule is:											
	(A)	trigonal bipyra	midal		(B)	square planar						
	(C)	tetrahedral			(D)	see-saw						
59 .	Which	of the following i	ions has	resonating struc	ture ?							
	(A)	SO_3^{2-}	(B)	PO_4^{3-}	(C)	SO_4^{2-}	(D)	All of these				
60.	Covalency of carbon in the CO molecule is three because											
	(A)	an unexcited carbon atom has two unpaired electrons										
	(B)	the carbon atom can be an acceptor of an electron pair										
	(C)	the carbon atom has four valence electrons										
	(D)	maximum covalency of carbon is three										